M3D-C1 Postprocessing for LP Ablation Code

by

Brendan C. Lyons¹

¹General Atomics

²Princeton Plasma Physics Laboratory

October 20th, 2020

LP Ablation Code Takes Needs Only Scalar Plasma Quantities

- LP code takes far-field plasma parameters as boundary conditions
 - n_e , T_e , and |B|
 - Density & temperature should be outside the ablation cloud (|B| too?)
- We elected to do get these quantities in post-processing from the M3D-C1 .h5 files
 - Allows for easy experimentation on correct evaluation procedure
 - Once finalized, could be hard-coded for higher time-resolution output in M3D-C1

New Script Created to Postprocess These Quantities

write_lp_input

- Based on and included within fusion-io library
- Traces along field line from starting location in both directions (with B and against B)
- Evaluates n_e, T_e, and |B| at the end points and averages
- Can start with collection of points in some poloidal radius around starting point to average that too
- By default, reads pellet location at a slice as the starting point
- Can be set to do this for all slices
- Important output to stdout
 - Line of R, phi, Z, ne, Te, |B| for each slice
 - Can be redirected to file for easy reading

How to use

Command line

- write_lp_input <file> <slice> <ipellet>
- <file> is the C1.h5 filename (default C1.h5)
- <slice> is the number of the time_###.h5
 you want (default 0)
- <ipellet> is the number of the pellet you want, if there are multiple (default 0)

Fortran Namelist (write_lp.nml)

```
&params

R0 = 2.1

phi0 = 0.0

Z0 = 0.0

L = 0.5

Nstep = 100

rpol = 0.1

Npol = 100

iall_slices = 0

iprint = 0

ioutput_fl = 1
```

